The generator matrix 1 0 0 1 1 1 1 1 1 0 1 2X 1 1 0 1 1 1 1 X X 1 1 1 1 2X 1 1 1 0 0 1 1 1 1 0 1 X 1 0 2X 2X 1 1 2X 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 X 1 X 0 1 2X 1 1 1 1 1 1 1 1 X 1 X 1 X 1 1 1 1 1 X 1 0 1 0 0 0 1 2 1 2 1 2X+1 1 2X+2 2X+1 1 X+1 0 X 2X+2 0 1 2X+1 2 X X+2 1 2 2X 2 0 1 X+1 X+1 X 2X 1 X+1 1 X+2 1 0 1 2X+2 2X+1 1 2X+1 2X+2 X 1 X+2 2X+1 X+2 2X X 0 X 2X 2X+1 2X+2 2X+2 1 1 1 1 1 0 1 1 1 X+1 2 X+2 2 2 0 0 X 2X 0 2X X X 2X+1 X+1 X X+2 0 0 1 1 2 2 2 1 0 2 2X 2X+1 2X+1 0 X+2 2X+1 0 2 2X+1 1 2X 2X+2 0 X+1 X+2 2X+1 X+1 2X+2 2X 1 X 2X 2X+2 0 X+1 X+1 X+1 2X+2 X+2 X 1 0 1 2X+2 2 0 2X 1 2X+1 2X+1 1 2 X 0 X+2 X+1 X+2 2X+1 2X+1 X 1 X 2 X+2 2X+2 1 2X+2 1 2X+1 X 2X+1 X 2 X+1 1 X 1 X+2 1 2X 2X 1 X+1 X+1 1 X 0 0 0 2X 0 0 0 0 0 0 2X X 0 X X X X 2X 2X X 2X 2X X 2X 2X 0 X X 2X 0 2X X 0 2X X 0 0 0 X 2X 0 2X 0 X X 2X 0 0 2X X 2X X 2X 0 2X X 0 0 X X 0 2X 2X 0 2X 2X 2X X 0 X 0 2X 0 0 0 0 X 0 2X 0 X X 0 2X 0 X 0 0 0 0 X 0 0 0 0 0 0 0 X 0 0 0 0 X X 0 0 0 2X 2X 2X X 2X X 2X X X X X 2X 2X 2X X X 2X 0 X X X 2X X 2X 0 2X X X X 0 X 0 2X X 0 X X 2X 2X 0 0 X 2X 0 X 2X 2X 0 0 2X X 2X X X 0 X 0 2X 0 2X X 2X 2X X 0 0 0 0 0 2X 0 X X X 2X 0 2X X 2X 2X 2X 2X X X X 0 X X 0 X X 2X 0 X 0 X 0 0 0 2X 0 X 0 0 0 X X 2X 0 X X 2X 0 X X 0 2X 0 2X 0 2X X 2X 2X 0 2X 2X 0 0 2X X 2X 2X X 0 0 2X 2X X 0 2X 2X X 2X X 2X 0 X 0 2X 0 0 0 0 0 0 X 2X X 0 2X 0 2X X X 0 X 2X X X 2X 2X 0 X 2X X 2X X X 2X X 2X 2X 2X 2X 2X X 0 0 X 2X X 2X X X 2X 2X 0 0 2X 0 X 0 2X X 0 2X X X 0 2X 0 X 0 X 0 X 2X 0 2X X 0 X X X 2X 0 2X 2X 0 0 0 0 2X 0 2X generates a code of length 86 over Z3[X]/(X^2) who´s minimum homogenous weight is 153. Homogenous weight enumerator: w(x)=1x^0+150x^153+102x^154+258x^155+526x^156+318x^157+870x^158+836x^159+810x^160+1722x^161+1394x^162+1158x^163+2508x^164+1944x^165+1368x^166+2946x^167+2620x^168+1560x^169+3726x^170+2830x^171+2028x^172+4146x^173+2700x^174+1956x^175+3852x^176+2652x^177+1728x^178+3096x^179+1998x^180+1080x^181+1800x^182+1008x^183+612x^184+966x^185+578x^186+324x^187+258x^188+204x^189+60x^190+90x^191+98x^192+12x^193+6x^194+48x^195+6x^196+32x^198+38x^201+16x^204+6x^207+4x^210 The gray image is a linear code over GF(3) with n=258, k=10 and d=153. This code was found by Heurico 1.16 in 70.6 seconds.